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Abstract

Fungal communities related to invasive plants may change with an elevational gradient, which may affect the 
performance and invasiveness of invasive plants. Our recent study revealed that root arbuscular mycorrhizal 
fungi colonization rate of invasive plant Galinsoga quadriradiata decreased with elevation. However, it is 
unclear whether it is caused by the changes in the fungal community along elevation. To address this issue, we 
used high-throughput sequencing techniques, functional groupings and linear statistics to examine how fungal 
communities in the rhizosphere and roots of G. quadriradiata are changed across the elevation in Qinling and 
Bashan Mountains, China. Our results revealed that species diversity and composition of the rhizosphere and root 
fungal communities changed along the elevation. The Shannon–Wiener diversity index in the rhizosphere and 
roots increased and decreased with elevation, respectively. In contrast, the relative abundance of pathotroph in 
the rhizosphere decreased while it increased in the roots with elevation. These suggest that, when the invasive 
plant colonizes into high altitudes, it may not suffer from limited rhizosphere fungal symbionts, but rather the 
ability of the plant to create and maintain these associations decreases. The invader tends to accumulate more 
pathogenic fungi in the roots, while the dependence on symbiotic fungi  is reduced during expansion into 
higher elevations. These results highlight that the interactions between invasive plants and fungal community 
substantially change along elevation, and that belowground interactions may be key in our understanding of 
how invasive plants derive success in stressful, high-elevation environments.

Keywords invasive plants, range expansion, fungal diversity, fungal abundance, symbionts, pathotrophs

入侵植物粗毛牛膝菊根际土壤和根系真菌群落会沿海拔扩散路径发生变化

摘要：与入侵植物相关的真菌群落可能会随着海拔发生变化，这可能会影响入侵植物的表现和入侵力。

我们最近的研究表明，入侵植物粗毛牛膝菊(Galinsoga quadriradiata)的根系AMF侵染率随着海拔的升高
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而下降。然而，尚不清楚这是否与真菌群落沿海拔的变化相关。为此，我们采用高通量测序技术、功能

分组和线性分析等方法，研究了秦巴山区的粗毛牛膝菊根际土壤和根系真菌群落组成与结构沿海拔的变

化趋势。研究结果表明，粗毛牛膝菊根际土壤和根系真菌群落物种多样性和种类组成随海拔升高发生了

显著变化。在根际土壤中真菌群落香农-威纳多样性指数随着海拔升高呈上升趋势，而在根系中则呈下

降趋势。同时，在根际土壤中共生真菌的相对丰度随海拔高度没有发生显著变化，而在根系中呈下降趋

势；在根际土壤中病原真菌的相对丰度随着海拔呈下降趋势，而在根系中呈上升趋势。这些研究结果暗 

示，该种在向研究区域高海拔地区入侵时，土壤共生真菌的供给并不会缺乏，但其与这些真菌之间建立

并维持共生关系的能力降低了；在向高海拔扩张过程中，该种倾向于在根系中积累更多的病原真菌，而

减少对共生真菌的依赖。这些研究结果说明，入侵植物与真菌群落之间的相互作用会沿着海拔梯度发生

显著变化，植物地下部分与真菌的相互作用可能是我们理解外来种如何在高海拔环境中入侵成功的关

键。

关键词：入侵植物，范围扩张，真菌多样性，真菌丰度，共生菌，病原菌

INTRODUCTION

Plant invasion is an important environmental 
problem because it can affect the function and 
stability of natural ecosystems (Feng et al. 2022; 
Liu et al. 2017; Vetter et al. 2020; Feng et al. 2022), 
and increasing evidence shows that invasive plants 
can spread into high-elevation mountain ranges 
(Pauchard et  al. 2009). The climatic parameters 
and soil properties of mountain regions change 
dramatically along altitudinal gradients, especially 
with respect to temperature, precipitation and soil 
properties (Coutinho et al. 2015). These variations 
strongly influence the composition and evolution 
of plant and soil microbial communities (Coutinho 
et  al. 2015). In response, many plants in these 
environments, and particularly invasive species, 
have developed numerous adaptation strategies 
to face the harsh conditions resulting from the 
increase in altitude. These adaptation strategies 
include high cold resistance and affinity to moist 
soil (Petitpierre et  al. 2016), changed life-history 
traits (Ansari and Daehler 2010) and enhanced 
tolerance to high UV-B radiation levels (Alexander 
et al. 2009; Watermann et al. 2019).

Furthermore, in addition to the above traits, 
invasive plant species also likely benefit from positive 
interactions with soil microbial communities. 
Many plants are strongly affected by interactions 
with arbuscular mycorrhizal fungi (AMF) and 
ectomycorrhizal (ECM) fungi, which can play 
important roles in the invasion of exotic plants (Aslani 
et  al. 2019; Kong et al. 2022; Rodriguez-Caballero 
et al. 2020; Smith and Read 2008; Thorn 2003; van 
der Putten et al. 2007a). For example, the association 

with mycorrhizal fungi can facilitate the expansion 
of invasive plants by promoting their growth relative 
to those of non-mycorrhizal plants (Hayward et  al. 
2015; Menzel et al. 2017). However, these no differ 
between native and non-native lineage of Phragmites 
root fungal and bacterial community diversity 
(Bickford et  al. 2018). Therefore, the effect of soil 
and root microorganisms on alien plant invasions is 
still not well understood. At the same time, invasive 
plants can alter the diversity and species composition 
of soil fungal communities (Gaggini et  al. 2018; 
Řezáčová et  al. 2021). For example, invasion of 
Centaurea solstitialis and Aegilops triuncialis in California 
grasslands has been documented to alter soil microbial 
composition (Batten et  al. 2006) and another study 
found that invasive Triadica sebifera can alter soil 
AMF communities (e.g. colonization and spore 
germination) via root exudates (Tian et al. 2021).

In mountain ranges, soil fungal communities 
have been shown to shift dramatically with 
elevation due to changes in environmental drivers 
(Jarvis et  al. 2015; Siles et  al. 2017). Generally 
speaking, soil fungal diversity decreases as elevation 
increases, likely because of changes in soil pH and 
mean annual temperature (Bahram et al. 2012; Ping 
et  al. 2017). However, other contradictory results 
have also been reported. For example, Siles and 
Margesin (2016) found that soil fungal community 
relative size, fungal abundance and microbial 
activity increased with elevation. Furthermore, 
relative contribution of different soil fungal 
functional guilds (e.g. symbiotes, saprotrophs 
and pathogens) also change with elevation in 
mountain ranges (Veach et al. 2018). The richness 
of operational taxonomic units (OTUs) of soil AMF, 
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which are generally symbiotic with plants, usually 
decreases with elevation (Geml 2017; Pellissier et al. 
2013; Vašutová et  al. 2017), whereas saprotroph 
abundance increases with elevation (Eduardo et al. 
2018) and fungal pathogen abundance depends 
on the elevational distribution of the host species 
(Merges et  al. 2018). These different changes in 
abundance may impact the expansion of invasive 
plants. Previous studies suggest that soil AMF 
community could co-disperse with non-native 
plants across elevational gradients (Clavel et  al. 
2021), and invasive plants subsequently could 
obtain more advantages than native competitors 
in higher altitudes (Urcelay et al. 2019). However, 
these functional group effects as they relate to 
plant invasions, and particularly as they relate to 
invasions in mountain ranges, are still far from 
being resolved and merit further consideration.

Plant invasion can exert important effects on 
the soil fungal community, but the latter can also 
affect the invader via plant–soil feedbacks (de 
Souza et al. 2018; Si et al. 2013). One potential way 
to gain insight into the magnitude and direction 
of these effects is to compare the properties and 
characteristics of soil mycorrhizal communities 
and those communities specifically associated with 
plant roots (Lumibao et  al. 2020). Specifically, 
rhizosphere fungal abundance and diversity can 
inform whether invasive plants have access to 
different fungal species and functional groups, but 
measuring these characteristics for root samples 
will provide further confirmation as to whether the 
plants are actually associating with them. Although 
this approach is not novel, it has primarily been 
limited to use in agricultural studies investigating 
AMF associations of crop species (Mirás-Avalos et al. 
2011; Xu et al. 2012), and only relatively recently 
has it been applied within a broader ecological 
framework to natural systems (Lumibao et  al. 
2020). Previous work has suggested that fungal 
abundance (e.g. pathogenic and saprophytic) in soil 
can be greater than that of root samples for invasive 
plant species (Phillips et  al. 2019). Although 
unexplored, it is also possible that the differences 
of fungal diversity could affect the process of 
invasion into mountain ranges as well. Our latest 
study revealed that root AMF colonization rate of 
Galinsoga quadriradiata decreased significantly with 
elevation in Chinese mountain ranges, and that 
higher-altitude populations maintained a lower 
root AMF colonization rate than the lower-altitude 
populations, even in a common garden (Liu 

et  al. 2021a), lending support to that local fungal 
community may impact the dispersal of invasive 
plant. However, it is still unclear whether this is 
caused by the changes of the fungal community 
along elevation or by population differences.

In this study, we aimed to examine how the 
rhizosphere and root fungal community of populations 
of invasive G. quadriradiata changes with elevation in 
Chinese mountain ranges. Our previous studies suggest 
that this species could become more aggressive and 
expand into high altitudes in the future with greater 
dispersal traits (Liu et al. 2018, 2021b; Yang et al. 2018) 
and perhaps as a consequence of its ability to form 
symbiotic associations with AMF during its expansion 
into mountain ranges (Liu et al. 2021a). This, in turn, 
increased its competitive ability and promoted its 
expansion in areas with available fungal symbionts 
(unpublished data). To explore this, we measured 
fungal community composition in the rhizosphere 
and roots of G.  quadriradiata along an elevational 
gradient in the Qinling and Bashan Mountains in 
central and southwestern China. We asked three 
questions: (i) How do rhizosphere and root fungal 
community compositions of G.  quadriradiata change 
across elevation? (ii) What are the main drivers of 
fungal community composition? (iii) Does root fungal 
community composition correlate with the rhizosphere 
community composition? Answering these questions 
will provide new information as to whether the 
associations between G.  quadriradiata and soil fungi 
are limited by a lack of soil fungal inoculum during 
the expansion, and further inform practitioners and 
land managers about the potential for this invader to 
continue to invade along elevational gradients.

MATERIALS AND METHODS

Study species

Galinsoga quadriradiata (Asterales: Asteraceae), is an 
annual herb native to Central and South America 
and was first recorded invading China in 1978 on 
Lushan Mountain in Jiujiang City of Jiangxi Province 
(Liu et  al. 2016, 2018, 2021a). It can cause serious 
ecological and economic losses for the natural and 
agricultural ecosystems due to its large seed yield and 
high population density (Kabuce and Priede 2010; 
Liu et  al. 2016). It is widely distributed in several 
provinces, and has caused serious invasion in the 
Qinling and Bashan Mountains (Liu et al. 2016; Yang 
et al. 2018; Zhang et al. 2022). This invasive plant can 
form a close symbiotic relationship with soil fungi 
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such as AMF, and this symbiotic relationship has 
been shown to significantly differ across elevations 
(Liu et al. 2021a).

Study area

The Qinling and Bashan Mountains are important 
areas for the ecological protection and research, 
which are located in central and southwestern 
China (30°5′–34°59′ N, 102°54′–112°4′ E, about 
222 300 km2) (Liu et al. 2021b). And, the topography 
characters and environmental conditions of these 
mountains are complex and distinct between the 
northern and southern regions (Wang et  al. 2017). 
The highest elevation of the Qinling Mountains is 
3767 m a.s.l., while the highest peak of Bashan is 
3105. These mountains are the watershed between 
the Yangtze and Yellow rivers, serve as the most 
important barriers between the southern and the 
northern regions of central China (Liu et al. 2021b).

The low-elevation areas on the southern slope 
of the Qinling Mountains have a subtropical 
climate; while the high-elevation areas on the 
southern slope and all the altitude areas on the 
northern slope have lower temperatures and 
reduced precipitation, and the climate is mainly 
temperate. The average annual temperature in 
this range is 11–13  °C and the average annual 
precipitation is between 590 and 764 mm (Zhao 
et  al. 2014). Because it is located about 50 km 
south of the Qinling Mountains, the Bashan 
Mountains have a subtropical climate as a whole, 
and the two mountains extend in parallel from 
east to west (Zhan et  al. 2009). The average 
annual temperature of the Bashan Mountains is 
14.5–16.5 °C, and average annual precipitation is 
between 800 and 1400  mm (Li et  al. 1990). The 
Qinling and Bashan Mountains act as important 
natural obstacles for defending exotic species from 
entering northern regions of China following their 
introduction and establishment in the southeast.

Soil and root sample collection

In May 2017, we set up 14 sites in the Qinling and 
Bashan Mountains (Table 1; Fig. 1). The elevation 
interval between each sampling site is 300–500 m 
ranging from 370 to 1947 m a.s.l. At each site, we 
randomly selected ten individuals of G.  quadriradiata 
and collected fresh root (>2 g) and rhizosphere samples 
(>5 g) from individual plants into cryopreserved tubes. 
The adhering soil and plant debris on the root were 
carefully removed, and then washed using water 
before putting into the tubes. The rhizosphere samples 

consisted of soil up to 1 cm away from the roots. These 
tubes were then immediately stored in a dry ice freezer 
and taken back to the laboratory and kept in a −80 °C 
freezer until samples could be processed. Meanwhile, 
we collected soil sample (approximately 1 kg) by mixing 
the rest of rhizosphere from each site to measure the 
soil chemical and physical properties. The soil samples 
were air-dried and finely ground before analyzing. We 
measured the soil chemical and physical properties 
based on the method described by Liu et al. (2021a). 
This included quantifications of soil total nitrogen 
concentrations (TN, mg g−1), soil total phosphorous 
concentrations (TP, mg g−1), soil available nitrogen (a 
combination of soil nitrate-nitrogen concentration 
[NO

3
−-N, mg kg−1] and soil ammonium-nitrogen 

concentration [NH
4
+-N, mg kg−1]), soil available 

phosphorous (AP, mg kg−1) and soil dissolved organic 
carbon concentration (DOC, mg kg−1). All the extracted 
soil solutions were measured using a continuous flow 
analyzer (SEAL AutoAnalyzer III, Germany). Then, 
soil electrical conductivity (EC, µS cm−1) and the pH 
value were, respectively, measured using EC and pH 
Meters (REX DDS-11C and PHS-25, INESA Scientific 
Instrument Co., Ltd, Shanghai, China) in a 1:2.5 (w/v) 
soil water suspension. We additionally measured 
soil water content (WaterC, %) using a portable soil 
moisture tachometer (HH2 Moisture Meter).

DNA extraction

The rhizosphere samples from seven sites were 
chosen based on the elevation for the rhizosphere 
fungal community analysis. Five rhizosphere samples 
of each site (n = 35, seven sites × five replicates) were 
randomly selected for DNA extracting. We mixed 
ten root samples from each site together for the root 
fungal community analysis. The mixed root samples 
of all sites (n = 14) were used for DNA extracting.

Genomic DNA were extracted from 0.25  g of 
homogenized fresh rhizosphere or root samples 
using the E.Z.N.A. Soil DNA Kit (Omega Bio-tek, 
Hibind, Germany) according to the instructions of 
the manufacturer. The concentration and purity 
of DNA were analyzed with a NanoDrop One 
spectrophotometer (Thermo Fisher Scientific) at a ratio 
of 260 nm; DNA quality was assessed by 1.8% agarose 
gel electrophoresis. Isolated DNA was kept frozen at 
−20 °C until used (Phillips et al. 2019; Zhang et al. 2018).

Library construction and sequencing

The internal transcribed spacer (ITS) 1 region located 
in fungal chromosomes was amplified with the primer 
pair ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) 
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and ITS2 (5′-GCTGCGTTCTTCATCGATGC-3′)  
using a two-step polymerase chain reaction (PCR) 
(Mbareche et  al. 2020; White et  al. 1990). The 
construction of the library follows the steps described 
by Berry et al. (2011). The first PCR was performed 

in a final volume of 50 µL, containing template DNA 
1  µL, forward primer (Vn F, 10  mmol L−1) 1.5  µL, 
reverse primer (Vn R, 10 mmol L−1) 1.5 µL, Q5 High-
Fidelity DNA Polymerase (Phusion, NEB) 0.2  µL, 
High GC Enhancer 10 µL, Buffer 10 µL, dNTP 1 µL 

Table 1: The locations of the elevational populations of Galinsoga quadriradiata for the field survey

Site ID Latitude (N°) Longitude (E°) Elevation (m) Root sample ID Soil sample ID Mountains 

1 32.48628 108.881 370 BR1 — Bashan

2 32.31353 108.9439 436 BR2 BS1 Bashan

3 32.09437 109.256 1083 BR3 BS2 Bashan

4 32.03771 109.3047 1536 BR4 BS3 Bashan

5 32.02794 109.3201 1737 BR5 BS4 Bashan

6 32.02292 109.3358 1947 BR6 BS5 Bashan

7 33.29625 108.1904 590 QR1 — Qinling

8 33.3485 108.3209 829 QR2 QS1 Qinling

9 33.59658 108.6383 834 QR3 — Qinling

10 33.37503 108.3473 1000 QR4 — Qinling

11 33.77383 108.7826 1236 QR5 — Qinling

12 33.4272 108.4202 1307 QR6 — Qinling

13 33.54067 108.5442 1361 QR7 QS2 Qinling

14 33.43275 108.4534 1563 QR8 — Qinling

Figure 1: The map of the Galinsoga quadriradiata populations for the field survey.
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and ddH
2
O 24.8 µL. Thermal cycle conditions for the 

first ITS1 PCR consisted of an initial denaturation at 
95 °C for 5 min; followed by 15 cycles of at 95 °C for 
1 min, 50 °C for 1 min, 72 °C for 1 min, with a final 
extension of 72 °C for 7 min, then refrigerate at 4 °C. 
The PCR amplification products were extracted from 
a 1.8% agarose gel (120 V, 40 min), purified further 
using a MinElute® PCR Purification Kit (QIAGEN, 
Hilden, Germany) following the manufacturer’s 
protocol, and 10  µL of the purified and diluted 
product was used as template for indexing PCR to 
allow a multiplexed sequencing. The second (Solexa) 
PCR mixture was containing 10 µL template DNA, 
1  µL forward connector (MPPI-a 10  mmol L−1), 
1  µL reverse connector (MPPI-b 10  mmol L−1), 2× 
Phµsion HF MM 20  µL and 8  µL ddH

2
O. The PCR 

conditions were: 98 °C for 30 s followed by 10 cycles 
of at 98 °C for 10 s, 65 °C for 30 s, 72 °C for 30 s, 
with a final extension of 72 °C for 5 min. DNA was 
recovered after 1.8% agarose gel electrophoresis of 
the second PCR products. Qubit 2.0 fluorescent agent 
was used to quantify the recovery of the products, 
and all samples were mixed according to the 
measured DNA concentration by the 1:1 ratio and 
fully mixed. Finally, we checked the quality of the 
library and paired-end sequencing was carried out on 
an Illumina HiSeq 2500 (Illumina Inc., San Diego, 
CA) with a qualified library. Qualified library was 
sequenced using Illumina HiSeq 2500 by Biomarker 
Co., Ltd (Beijing, China).

Bioinformatic analysis

We collated the original data according to the 
minimum overlap (10  bp) and the maximum 
allowable error ratio of the overlap area of 0.2 for 
all the reads of each sample with FLASH (Version 
1.2.7) to get the raw tags. High-quality clean tags 
were obtained by Trimmomatic (Version 0.33) 
through quality filtering on the raw tags (forward 
and reverse) (Bolger et  al. 2014). To obtain final 
effective tags, the chimeric sequences were identified 
and removed using UCHIME (Version 4.2) (Edgar 
et  al. 2011). Sequencing reads with greater than 
97% similarity threshold were clustered into OTUs 
using the UCLUST algorithm in Quantitative insight 
into the microbial ecology software (QIIME Version 
1.8.0; http://qiime.org/) (Caporaso et al. 2010), and 
we made taxonomic annotations on the OTUs based 
on the UNITE (fungi, https://unite.ut.ee/) taxonomic 
database. The alpha diversity indices (ACE, ACE 
richness estimator; Chao1, Chao1 richness estimator; 
Simpson diversity index; Shannon–Wiener diversity 

index) were calculated based on the number of 
OTUs detected in the samples and were generated 
by Mothur software (Version v.1.30) (Schloss et  al. 
2009). QIIME software was also used to carry out the 
Beta diversity analysis to compare the similarity of 
different samples in species diversity.

OTU functional group assignment

The fungal OTUs were taxonomically parsed by 
ecological guilds or ‘functional groups’ using the 
online application FUNGuild (http://www.stbates.
org/guilds/app.php) (Nguyen et  al. 2016). The tool 
assigns guild based on the current state of knowledge 
and with a confidence level as follows: ‘highly 
probable’, ‘probable’ and ‘possible’ (suspected but 
not proven, with the conflicting reports cited). Using 
FUNGuild, OTUs were assigned into three functional 
groups (trophic mode): ‘pathotroph’, ‘saprotroph’ 
and ‘symbiotroph’ using only data with confidence 
levels as ‘highly probable’ and ‘probable’. After 
processing OTUs through FUNGuild, we also selected 
AMF (Glomeromycotina) from the symbiont group 
to analyze the diversity and species composition of 
AMF specifically (Phillips et al. 2019).

Data analyses

We constructed a linear regression analysis to test 
the changes of fungal community alpha diversity, 
number of OTUs, number of genera and OTUs 
relative abundance of fungal functional groups in 
the rhizosphere and roots of G.  quadriradiata along 
the elevation. We used the weighted algorithm of 
Bray–Curtis Distance to analyze the Beta diversity 
because it can consider both the presence and 
relative abundance of species. We used detrended 
correspondence analysis (DCA) and transformation-
based redundancy analysis (tb-RDA) to analyze the 
relationship between fungal community composition 
(the phylum level) and environmental factors 
(WaterC, DOC, TN, TP, NH

4
+-N, NO

3
−-N, AP, pH, 

elevation and EC). The results of DCA showed that 
lengths of the first four axes for both the rhizosphere 
and root samples were less than 3, indicating that RDA 
should be used to analyze it. We thus used tb-RDA 
to analyze the relationship between environmental 
factors and the fungal community composition. The 
statistical significance of the tb-RDA was tested using 
permutation tests (999 permutations; P < 0.05).

In addition, we used Pearson’s correlation analysis 
to examine the relationship of the fungal community 
diversity (alpha diversity and number of OTUs) and 
relative abundance (the phylum level and functional 
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groups) between the rhizosphere and root samples. 
Only the data from the 7 sites with both root and 
rhizosphere soil samples were taken into the analysis. 
Furthermore, the same way was used to examine the 
relationship between fungal community diversity 
(the phylum level, both rhizosphere and root 
samples) and environmental factors, and to examine 
the relationship between fungal community diversity 
(the genus level, both rhizosphere and root samples) 
and elevation. All data analyses were performed 
in R Version 4.0.3 (R Core Team 2021). Packages 
psych (Revelle 2021), vegan (Dixon 2003) and ggplot2 
(Wickham 2016) were used for calculation, statistical 
analysis and data visualization.

RESULTS

The fungal community composition

We observed a total of 722 OTUs for the rhizosphere 
samples of G. quadriradiata. These OTUs belonged 
to 12 phyla, 32 classes, 64 orders, 108 families, 
165 genera and 144 species. Our results showed 
that the Shannon–Wiener diversity index of the 
rhizosphere fungal communities significantly 
increased with elevation (R2  =  0.12, P  =  0.042, 
Fig. 2a) while the number of genera (R2  =  0.05, 
P = 0.195, Fig. 2c) was not significantly correlated 
with elevation. The relative rhizosphere pathotroph 
OTU abundance (R2 = 0.15, P = 0.022, Fig. 3a) was 
negatively correlated with elevation while that of 
saprotroph OTUs (R2 = 0.17, P = 0.014, Fig. 3c) was 
positively correlated with the elevation. Relative 
rhizosphere symbiotroph OTU abundance was not 
significantly correlated with elevation (R2 = 0.06, 
P = 0.192, Fig. 3e).

We obtained a total of 1939 OTUs from root 
samples of G.  quadriradiata. These OTUs belonged 
to 15 phyla, 40 classes, 81 orders, 179 families, 
318 genera and 360 species. The Shannon–Wiener 
diversity index (R2 = 0.34, P = 0.046, Fig. 2b) and the 
number of genera (R2 = 0.32, P = 0.034, Fig. 2d) were 
significantly negatively correlated with elevation. 
The relative root pathotroph OTU abundance 
significantly increased (R2 = 0.55, P = 0.006, Fig. 3b) 
while that of symbiotrophs significantly decreased 
(R2 = 0.41, P = 0.024, Fig. 3f) with elevation. Relative 
saprotroph OTU abundance was not significantly 
correlated with elevation (R2 = 0.03, P = 0.565, Fig. 
3d).

The Beta diversity of fungal and AMF communities 
in the rhizosphere (Supplementary Figs S1 and 

S2) and roots (Supplementary Figs S3 and S4) of 
G.  quadriradiata differed between high- and low-
elevational sites. The OTU relative abundance 
and species composition of rhizosphere fungal 
communities varied across elevation at both the 
phylum and family levels (Supplementary Figs S5 
and S6). The OTU relative abundance of phylum 
Ascomycota was highest at each elevational site 
(Supplementary Fig. S5). Similarly, OTU relative 
abundance and species composition of the root fungal 
communities also varied across elevation at both 
the phylum and family levels (Supplementary Figs 
S7 and S8). The OTU relative abundance of phylum 
Ascomycota and Olpidiomycota changed most 
obviously with elevation (Supplementary Fig. S7). 
The OTU relative abundance of phylum Ascomycota 
first decreased and then increased with elevation, 
while that of phylum Olpidiomycota showed the 
opposite trend (Supplementary Fig. S7). At the genus 
level, the OTU relative abundance of most genera 
was significantly correlated with elevation in both 
the rhizosphere and roots (Supplementary Tables S3 
and S4). These genera belong to phyla Ascomycota 
and Basidiomycota. In addition, the OTU relative 
abundance of AMF communities in both the 
rhizosphere (R2 = 0.04, P = 0.273, Supplementary Fig. 
S9a) and roots (R2 = 0.21, P = 0.101, Supplementary 
Fig. S9b) was not significantly correlated with the 
elevation.

The effects of environmental factors

Environmental factors explained 22.05% of the 
total changes in the rhizosphere fungal community 
composition at the phylum level (Fig. 4). The results 
of permutation tests suggested that variation in the 
rhizosphere fungal community composition at the 
phylum level were highly correlated with elevation  
(F

1, 23
  =  4.326, P  <  0.001), soil pH (F

1, 23
  =  4.368, 

P  =  0.002), NH
4
+-N (F

1, 23
  =  3.759, P  =  0.003), AP  

(F
1, 23

 = 4.585, P < 0.001), DOC (F
1, 23

 = 2.586, P = 0.024) 
and TN (F

1, 23
 = 2.762, P = 0.024). The first two axes, 

RDA1 and RDA2, explained 11.37% and 10.68%, 
respectively, of the total variations of the rhizosphere 
fungal community composition at the phylum level. 
Pearson’s correlation analysis revealed that the OTU 
relative abundance of Basidiomycota was negatively 
correlated with soil pH and TN (Supplementary 
Table S1). In contrast, the OTU relative abundance 
of Blastocladiomycota was positively correlated with 
soil pH (Supplementary Table S1). The OTU relative 
abundance of Glomeromycota was negatively correlated 
with WaterC (Supplementary Table S1). The OTU 
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relative abundance of Kickxellomycota was negatively 
correlated with NH

4
+-N (Supplementary Table S1). The 

OTU relative abundance of Neocallimastigomycota was 
negatively correlated with TP (Supplementary Table 
S1). The OTU relative abundance of Olpidiomycota was 
positively correlated with NH

4
+-N (Supplementary Table 

S1). The OTU relative abundance of Rozellomycota was 
positively correlated with EC, TN and TP (Supplementary 
Table S1). In addition, the OTU relative abundance 
of the pathotroph functional group was negatively 

related to elevation (Supplementary Table S1). The 
OTU relative abundance of the saprotroph functional 
group was significantly associated with the soil pH 
(negative), NH

4
+-N (positive) and elevation (positive; 

Supplementary Table S1). The OTU relative abundance 
of the symbiotroph functional group was negatively 
related to the soil pH (Supplementary Table S1).

The environmental variables explained 55.55% 
of the total changes in the root fungal community 
composition of G.  quadriradiata at the phylum level 

Figure 2: The linear correlations between elevation and Shannon–Wiener diversity index and the number of fungal 
genera in rhizosphere (a, b) and root (c, d) of Galinsoga quadriradiata.
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(Fig. 5). The results of permutation tests suggested that 
variation in the root fungal community composition 
at the phylum level was closely related to DOC  
(F

1, 3
 = 10.820, P = 0.006) and soil pH (F

1, 3
 = 4.407, 

P  = 0.050). The RDA1 and RDA2 explained 48.38% 
and 7.17%, respectively, of the total variation. Pearson’s 
correlation analysis revealed that the OTU relative 
abundance of Aphelidiomycota was closely correlated 
to EC and NH

4
+-N, while that of Blastocladiomycota was 

negatively correlated with soil pH, NH
4
+-N, elevation 

and TN (Supplementary Table S2). The OTU relative 
abundance of Kickxellomycota was associated with TP, 
while the OTU relative abundance of Mucoromycota 
was correlated with soil pH (Supplementary Table S2). 
The OTU relative abundance of Neocallimastigomycota 
and Entomophthoromycota was closely correlated to TN 
(Supplementary Table S2). The OTU relative abundance 
of Rozellomycota was highly related to NO

3
−-N and AP 

(Supplementary Table S2). In addition, the OTU relative 
abundance of the pathotroph functional group was 

Figure 3: The linear correlations between elevation and OTU relative abundance (OTU RA) of pathotroph, saprotroph and 
symbiotroph in rhizosphere (a, c, e) and root (b, d, f) of Galinsoga quadriradiata.
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positively related to the elevation (Supplementary Table 
S2). The OTU relative abundance of the saprotroph 
functional group was not significantly associated with 
any environmental factors (Supplementary Table 
S2). The OTU relative abundance of the symbiotroph 
functional group was negatively related to elevation 
(Supplementary Table S2).

The correlations between the fungal community 
of rhizosphere soil and root

The number of OTUs (R2 = 0.12, P = 0.045, Fig. 6a), 
Simpson diversity index (R2 = 0.12, P = 0.043, Fig. 
6b) and Shannon–Wiener diversity index (R2 = 0.22, 

P = 0.004, Fig. 6c) of the rhizosphere and root fungal 
communities were negatively correlated with each 
other. The OTU relative abundance of the rhizosphere 
and root fungal communities was not correlated 
with each other for most of the phyla except for 
Mucoromycota (P = 0.036, R = 0.244, Table 2) and 
Olpidiomycota (P = 0.043, R = 0.288, Table 2).

DISCUSSION

In this study, we investigated the changes in composition 
and diversity of rhizosphere and root fungal communities 
of G. quadriradiata along an elevational gradient in the 

Figure 4: The tb-RDA analysis of rhizosphere fungal community. pH = soil pH.
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Qinling and Bashan Mountains. The fungal community 
diversity and OTU relative abundance in the rhizosphere 
increased while those in the root decreased with 
elevation (Fig. 2), suggesting that this invader is more 
selective about fungal interactions at higher elevations. 
Interestingly, the OTU relative abundance of pathogenic 
fungi in the rhizosphere decreased while that in the 
root increased with elevation (Fig. 3), suggesting that 
the fungi that maintain interactions at higher elevations 
are those that are generally considered detrimental 
to plant performance. The Beta diversity of fungal 
and AMF communities in rhizosphere and root was 

significantly different between high and low elevation 
(Supplementary Figs S1–S4). Our results indicate that 
the expansion of G. quadriradiata into high elevation is 
accompanied by shifts in the mycorrhizal community. 
The reduced interactions between symbiotic fungal 
species and G.  quadriradiata may affect the invasion 
process of the invader at high elevations.

Different changing pattern of fungal community 
in the root and rhizosphere

In this study, root fungal community diversity 
significantly decreased with elevation while that 

Figure 5: The tb-RDA analysis of root fungal community. pH = soil pH.

D
ow

nloaded from
 https://academ

ic.oup.com
/jpe/article/16/1/rtac055/6580575 by guest on 19 January 2023

http://academic.oup.com/jpe/article-lookup/doi/10.1093/jpe/rtac055#supplementary-data


Copyedited by: DS

12 JOURNAL OF PLANT ECOLOGY | 2023, 16:rtac055

of the rhizosphere samples significantly increased 
(Fig. 2). This demonstrates that the abundance of 
colonizing fungi decreases when G.  quadriradiata 
expands to higher elevations. Furthermore, the 
OTU relative abundance of symbiotrophs did not 
change with elevation in the rhizosphere samples, 
but it significantly decreased with elevation in the 
root samples (Fig. 3). These results suggest that it is 
not fungal availability in the soil that changes across 

elevation, but rather the ability of the plant to create 
and maintain these associations decreases. This is 
presumably because of a trade-off between the invasive 
plant’s growth and fungal symbiosis. For example, 
although many invasive plants closely interact with 
mycorrhizal fungi and benefit from the interactions, 
the association can be costly under certain conditions 
(Grove et  al. 2017), resulting in situations where 
previously beneficial interactions become either less 

Table 2: These results of Pearson’s correlation analysis for alpha diversity, number of OTUs, number of genera, the relative 
abundance of phyla and fungal functional groups between rhizosphere soil fungal community and root

Root vs. Soil t df P Correlation 

Aphelidiomycota 1.286 33 0.208 0.218

Ascomycota 1.730 33 0.093 0.288

Basidiomycota 1.443 33 0.159 0.244

Blastocladiomycota 0.146 33 0.885 0.218

Chytridiomycota −1.288 33 0.207 0.288

Glomeromycota 1.855 33 0.073 0.244

Mortierellomycota −0.524 33 0.604 0.288

Mucoromycota 2.186 33 0.036 0.244

Neocallimastigomycota 1.414 33 0.167 0.218

Olpidiomycota 2.104 33 0.043 0.288

Rozellomycota −1.031 33 0.310 0.244

OTU RA of pathotroph −1.035 33 0.308 −0.177

OTU RA of saprotroph −0.508 33 0.615 −0.088

OTU RA of symbiotroph −1.629 33 0.113 −0.273

The correlation >0 means positive correlation, and <0 means negative correlation, the greater the absolute value, the 
stronger the correlation. Abbreviation: OTU RA = OUT relative abundance. Bold value indicates that it is statistically 
significant at P = 0.05 level.

Figure 6: The linear correlations of fungal community diversity [(a) number of OTUs, (b) Simpson diversity, (c) Shannon-
Wiener diversity] between rhizosphere and root of Galinsoga quadriradiata.
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beneficial or even harmful. Our results suggest that 
G.  quadriradiata reduces the number of symbiotic 
fungal species it interacts with at higher elevations, 
which could potentially indicate that some previously 
beneficial mycorrhizal interactions become too costly 
to maintain. It indicates that the plants become more 
selective in which fungal species to interact with under 
stressful conditions. This latter hypothesis is supported 
by our quantification of Beta diversity (Supplementary 
Figs S1–S4), which shows that high-elevation sites 
tend to clump together thereby demonstrating high 
degrees of community similarity. The fact that the 
rhizosphere samples do not show this trend further 
suggests that it is the plant i.e. selecting for the species 
to interact with and that these results are not due to 
environmental filtering of fungal species.

The decreased beneficial mycorrhizal symbiosis 
may constrain the expansion of invasive plants over 
wide distances and altitudinal zones, as has been 
noted in previous research (Urcelay et  al. 2017). 
Therefore, the diversity and relative abundance of the 
mycorrhizal fungal community may be a biological 
limiting factor affecting the spread of invasive plants 
to mountain ecosystems. Still, the inconsistent 
changing patterns of fungal diversity and the relative 
abundance of symbiotrophs in rhizosphere versus 
root samples indicate that the decreasing associations 
between G.  quadriradiata and fungal symbionts 
(including AMF) at high elevations probably are not 
caused by the lack of symbiotic fungi in the soil (Figs 
2 and 3), suggesting that it is the plant i.e. selecting 
against more diverse fungal communities. This is 
consistent with a similar result from a recent study 
which found that the AMF associating with invasive 
plant species were present across the whole elevation 
gradient (Clavel et al. 2021), suggesting that it is not 
mycorrhizal presence i.e. limiting interactions with 
invasive plant species. We speculate that these results 
could indicate that invasive plants are selecting for less 
diverse mycorrhizal communities at high elevations. 
Meanwhile, to some extent, the changing pattern of 
the interaction between invasive plant and fungal 
community may also be affected by abiotic factors.

It is important to note here some of the caveats 
and conditions of FUNGuild output as they pertain to 
the interpretation of our results. FUNGuild relies on 
third-party contributions from scientists and therefore 
is impacted by the amount of data made available 
to it, the taxonomic accuracy to which species are 
identified to, and the accuracy of natural history 
and autoecology used to classify them (Nguyen et al. 

2016). Despite the continued need to improve these 
aspects of FUNGuild for use in ecological studies such 
as this, it remains the most useful tool we currently 
have at our disposal to do this type of analysis and 
remains widely used within the ecological literature 
allowing direct comparison to other studies within 
this field. Still, it is possible that deficiencies in these 
areas of concern could result in misclassification of 
fungal diversity, and thus misinterpretation of our 
results, within this study, and the conclusions we 
draw should be interpreted with that in mind.

Our results showed that the rhizosphere fungal 
community diversity of invasive G.  quadriradiata 
increased with elevation (Fig. 2), suggesting that 
fungal abundance in the soil will likely not be a 
limiting factor in the elevational range expansion 
of this species in central China. A  recent study 
also showed that the trend of rhizosphere fungal 
community diversity along elevation differed 
between different groups of fungi, with richness of 
root-inhabiting fungi interacting with a native tree 
decreasing at higher elevations (Park et al. 2021). The 
contrast between these results and our work suggest 
that one aspect of successful plant invasions at high 
altitude may include maintaining fungal diversity in 
the rhizosphere while being selective about which 
species colonize the roots.

This would be consistent with some studies that  
have suggested that invasive plants could alter 
rhizosphere fungal community and therefore 
strengthen their growth via plant–soil feedback 
(Batten et  al. 2006; Caravaca et  al. 2020; Inderjit 
and van der Putten 2010). Invasive plants have 
been shown to attract more soil fungi to establish a 
symbiotic network and subsequently promote their 
colonization in new environments (Batten et al. 2006; 
Fahey et al. 2020; Gomes et al. 2018; Inderjit and van 
der Putten 2010). For example, some invasive plants 
have positive impacts on the soil fungal communities 
when they spread into a new environment, thus 
leading to great plant performance and further 
invasion (Anthony et al. 2017; Wang et al. 2018). In 
addition, others have found that, because of higher 
root activity earlier in the growing season and different 
nutrition provision strategies by invasive plants, the 
soil AMF community differed dramatically between 
native and invasive species (Hawkes et  al. 2006). 
Although the change in soil fungal community may 
be more conducive to the growth of invasive plants 
(Hawkes et al. 2006), invasive plants may still reduce 
fungal associations in response to the harsh abiotic 
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factors they face at high elevations and thus reduce 
the loss of carbohydrate to mycorrhizae.

Changes in diversity and abundance depend on 
mycorrhizal functional group

In the rhizosphere, OTU relative abundance of 
pathogens significantly decreased while abundance 
of symbiotrophs did not change significantly with 
elevation (Fig. 3). In contrast, root pathogen OTU 
relative abundance significantly increased while 
that of symbiotrophs significantly decreased with 
elevation (Fig. 3). Together, these results indicate 
that even though symbiotic fungal species remain 
available to G.  quadriradiata at high elevations, the 
plant is limited by its ability to form associations with 
these species while simultaneously accumulating 
a greater proportion of pathogenic fungi. To this 
point, the OTU relative abundance of pathogens 
was generally higher than that of symbiotrophs 
both in the rhizosphere and root samples. This could 
reflect results from previous research which found 
that invasive plants accumulate many pathogenic 
fungi in the soil to inhibit the growth of competitors 
when they spread into new habitats (Klironomos 
2002; van der Putten et  al. 2007b). Most of these 
pathogenic fungi usually are generalist pathogens, 
and they are less harmful to invasive plants than 
native plants (Inderjit and Cahill 2015; Inderjit and 
van der Putten 2010). However, further study is still 
needed to confirm this point and demonstrate that 
performance of the invader is not strongly negatively 
affected. In addition, the OTU relative abundance 
of symbiotrophs showed a significantly negative 
trend with elevation in the root of G. quadriradiata, 
while showed a no significantly positive trend in 
the rhizosphere (Fig. 3). This result suggests that 
there may be antagonistic effects between pathogens 
and symbiotrophs which could affect the spread 
of invasive plant G.  quadriradiata. Previous studies 
have documented antagonistic effects between soil 
fungal pathogen and symbiotic fungi (e.g. AMF) 
(Borowicz 2001; Liang et  al. 2015). For example, 
the interactions between pathogen and symbiotroph 
weaken the growth of invasive Robinia pseudoacacia 
(Borowicz 2001; Callaway et  al. 2011). Therefore, 
relatively greater proportions of pathogenic fungi at 
high elevations may inhibit the spread of invasive 
plants into mountain ranges.

The effect of environmental factors

Environmental factors can significantly affect the 
species composition and OTU relative abundance 

of the soil fungal community (Tedersoo et al. 2014). 
Previous studies suggest that elevation, nutrient 
content (e.g. phosphorus) (Bueno de Mesquita 
et  al. 2018) and habitat filtering (Haug et  al. 2019) 
could influence fungal community abundance (e.g. 
AMF), and thus could lead to fungal community 
turnover (Li et al. 2018). Our results show that the 
composition of the rhizosphere fungal community of 
G. quadriradiata is strongly related to elevation, soil 
pH, AP and TN (Fig. 4). The composition of the root 
fungal community was significantly correlated with 
DOC (Fig. 5). Together, this suggests that the changes 
in the fungal community can be explained by the 
changes of soil physical and chemical properties along 
the invader’s expansion route (Saitta et al. 2018; van 
der Putten 2002; Wang et al. 2015) that result from a 
combination of both biotic and abiotic drivers.

Soil chemical and physical properties can modify 
the fungal community during plant invasions. For 
example, the enrichment of nutrient elements could 
lead to aggregations of fungal community in soils 
and roots (Phillips et al. 2019). Soil pH is a dominant 
driver of microbial community composition and 
is significantly related to fungal richness and alpha 
diversity (Wang et  al. 2015). Environmental factors 
usually change sharply in mountain ranges: e.g. local 
microclimatic conditions (e.g. water) can vary largely 
even within a very short distance in the mountain 
range (Veach et al. 2018). Thus, soil fungal community 
composition and diversity usually show a strong shift 
along elevational gradients in response (Bahram et al. 
2012; Haug et al. 2019; Urcelay et al. 2019). Our results 
indicate that the effects of environmental factors 
on the rhizosphere and root fungal communities 
are different, and the interaction between invasive 
plants and fungal community may change along its 
expansion route. However, the interaction between 
them is complicated, and remarkably affected by 
both biotic and abiotic factors. Due to the lack of 
evidence from reciprocal transplant experiment and 
controlled experiment, it is currently hard to separate 
the interactions between the plant invasion with soil 
biotic and abiotic properties. Further studies are still 
needed.

Correlations between the rhizosphere and root 
fungal community compositions

Generally speaking, the fungal community in 
roots is recruited from the surrounding soil fungal 
communities, and can be determined by host plant 
defense strategies, root structure and root exudation 
(Edwards et al. 2015; Lumibao et al. 2020). Previous 
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studies indicate that there are significant differences 
in fungal communities between rhizosphere and 
root communities, and both of them could affect the 
fungal composition of the other (Lopez-Angulo et al. 
2020; Sietio et  al. 2018). Our results indicate that 
the fungal community diversity and composition in 
the rhizosphere of G.  quadriradiata were negatively 
correlated with those in the roots (Fig. 6). However, 
the relative abundance of some fungi species showed 
consistent trends in both rhizosphere and roots 
(Supplementary Tables S3 and S4). This suggests that 
the fungal community in the rhizosphere and roots 
may interact with each other during the expansion of 
G. quadriradiata into high elevation. Put another way, 
even though fungal diversity changed in opposite 
directions between the two sources, the fact that 
certain species showed consistent trends regardless 
of source suggests that there is still strong interaction 
between the two. This interaction between 
rhizosphere soil and roots is an interesting mechanism 
which is of great significance for the colonization and 
diffusion of invasive plants. The differences in fungal 
communities between roots and rhizosphere may 
be due to the selection of invasive plants, and they 
prefer to interact with these species which benefit 
them. There is a trade-off between carbohydrate loss 
and growth of invasive plants. For example, invasive 
plant Eupatorium catarium and Bidens pilosa interact 
more strongly with AMF under poor nutrient status 
than under rich nutrient status (Chen et  al. 2020). 
Then, invasive plants may select different fungal 
species to interact with under different conditions. 
Still, further research is needed to reveal the specific 
mechanism and its effect on plants and the fungal 
community and their interrelationship.

CONCLUSIONS
We investigated the changes in rhizosphere and root 
fungal community of invasive plant G. quadriradiata 
along its expansion route in mountain ranges. 
Consistent with our research hypothesis, the species 
composition and relative abundance of rhizosphere 
and root fungal community changed significantly 
along elevational gradients. Our results show that 
the fungal diversity in the rhizosphere increased 
significantly during the spread of G.  quadriradiata 
into high elevation, indicating that the invasive plant 
may not suffer from limited fungal symbionts in the 
soil when it colonizes into high altitudes. However, at 
the same time, the species diversity and abundance 
of root fungi decreased with elevation, suggesting 

the interactions between the invader and fungi 
could be compromised under the same conditions. 
Moreover, the abundance of fungal symbiotrophs 
in the roots also decreased with elevation while 
that in the rhizosphere did not change with the 
elevation, suggesting that the dependence of the 
invasive plant on the fungal symbionts decreases 
with the elevation. The OTU relative abundance of 
rhizosphere pathotrophs decreased while that in the 
roots increased with the elevation, indicating that the 
invader tends to accumulate more pathogenic fungi 
in the roots when it expands along elevation. In sum, 
our results highlight that the interactions between 
invasive plants and fungal community substantially 
changed when the invader expanded into high-
elevational areas and suggesting that belowground 
interactions will be key in our understanding of 
how invasive plants derive success in stressful, high-
elevation environments.
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Supplementary material is available at Journal of 
Plant Ecology online.
Table S1: Pearson’s correlation coefficients between 
environmental factors and rhizosphere fungal 
community at the phylum level.
Table S2: Pearson’s correlation coefficients between 
environmental factors and root fungal community at 
the phylum level.
Table S3: Pearson’s correlation coefficients between 
elevation and rhizosphere fungal community at the 
genus level.
Table S4: Pearson’s correlation coefficients between 
elevation and root fungal community at the 
genus level.
Figure S1: The Beta diversity of the fungal community 
in rhizosphere of Galinsoga quadriradiata at different 
elevations.
Figure S2: The Beta diversity of AMF community 
in rhizosphere of Galinsoga quadriradiata at different 
elevations.
Figure S3: The Beta diversity of the fungal community 
in the root of Galinsoga quadriradiata at different 
elevations.
Figure S4: The Beta diversity of AMF community 
in the root of Galinsoga quadriradiata at different 
elevations.
Figure S5: The fungal community composition and 
OTU relative abundance in rhizosphere of Galinsoga 
quadriradiata at the phylum level.
Figure S6: The fungal community composition and 
OTU relative abundance in rhizosphere of Galinsoga 
quadriradiata at the family level.
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Figure S7: The fungal community composition and 
OTU relative abundance in the root of Galinsoga 
quadriradiata at the phylum level.
Figure S8: The fungal community composition and 
OTU relative abundance in the root of Galinsoga 
quadriradiata at the family level.
Figure S9: The linear regression between elevation 
and OTU relative abundance (OTU RA) of AMF in 
rhizosphere (a) and root (b) of Galinsoga quadriradiata.
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