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This scientific commentary refers to “Ability of seedlings
to survive heat and drought portends future demographic
challenges for five southwestern US conifers” by Crockett &
Hurteau (https://doi.org/10.1093/treephys/tpad136).

What will future forests look like and what properties will
they have? This question is, in some sense, a simple one;
future forest composition and structure will be shaped by the
seedlings and saplings currently inhabiting the forest floor.
Part of future forest composition will come from old trees that
manage to outlive their peers, but, at some point, new trees
will grow into and replace the current canopy. Adult trees
are important to forest succession because they determine
seed input and understory microenvironmental conditions,
but seedling and sapling recruitment dynamics are what will
determine the ecosystem processes and ecosystem services of
tomorrow.

Climate change is projected to have many (primarily neg-
ative) impacts on both how forests are structured and the
ecosystem services they provide. While many mainstream
news headlines focus on how climate change is affecting and
will continue to affect mature canopy trees, it is equally
important to understand how climate change will impact
tree recruitment—the process by which seeds germinate into
seedlings, seedlings grow into saplings and, if all goes well,
saplings mature into canopy trees. Because trees are not
immortal (although see discussion in Piovesan and Biondi
2021), it is important that we not only understand how and
why adult trees die, but also that we understand the drivers of
tree recruitment that will shape the next generation of canopy
trees (Ibáñez et al. 2017) and the services they provide as a
cohesive ecosystem.

This is particularly dire within the context of climate change
because younger age classes are the most vulnerable to cli-
mate change (Niinemets 2010) and also the most likely to
experience nonrandom mortality (Green et al. 2014). That

is, while adult trees can rely on deep rooting structures and
carbon reserves to withstand climate change-related stress
(Niinemets 2010), seedlings and saplings are more likely to
die when faced with adverse conditions. And just like adult
trees, seedlings of different species have been shown to have
different resilience and resistance to climate change-related
stress (Lee and Ibáñez 2021a, 2021b). If some species are
prevented from recruiting into the canopy, the structure and
composition of future forests may be substantially different
from what they are today.

It is with this in mind that Crockett and Hurteau (2024)
designed their recent study published in Tree Physiology. The
authors investigated how short-term drought and extreme
heat events affect seedling survival for five conifer species
native to the southwest USA. Species ranged from xeric species
(i.e. those that inhabit drier, lower-elevation regions; Pinus
edulis and Pinus ponderosa), to more mesic species (Pseu-
dotsuga menziesii, Picea engelmannii and Abies concolor)
that inhabit cooler, moister and higher-elevation areas. The
authors tested the ability of seedlings of each species to survive
different combinations of drought and heat and then used
climate change projections to forecast changes to seedling
survival across their ranges.

The authors’ results are in line with their hypotheses and
with previous literature. The xeric species that already inhabit
warmer, drier regions of the US southwest were able to tolerate
hotter and drier conditions better than the three mesic species.
This is consistent with previous research showing that warm-
adapted species (Teskey et al. 2015) as well as warm-adapted
populations of the same species (Marias et al. 2016) have traits
better suited to withstand drought and bounce back from
extreme drought events. Note that this is not necessarily the
case for trees accustomed to warm and wet conditions, which
were recently projected to be the most negatively affected
by climate change-related drought events (Heilmayr et al.
2023). Alone, these findings would suggest that tree species
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in warmer and drier regions will be better able to withstand
future climate change-related disturbances in the American
southwest.

However, Crockett and Hurteau’s findings generated novel
insights by accounting for differences in future climate change
exposure. Using climate change projections for the end of the
current century (2080–2099) in combination with parameters
from their seedling survival experiments, the authors found
that mesic species were likely to maintain their current per-
formance better than the xeric species. This was generally
because the cooler, wetter regions these species inhabit will
experience less overall change in temperature and water avail-
ability. That is, although mesic species are more vulnerable
to drought compared with xeric species, they also currently
inhabit regions that are predicted to experience relatively
less negative environmental change over the coming decades.
It is important to note that the asynchrony of vulnerable
species and vulnerable regions is not likely to be the same
across all ecosystems or across broad latitudinal gradients
(Boisvert-Marsh et al. 2019), and there are systems other than
the desert southwest to which Crockett and Hurteau’s results
may not apply. For example, boreal systems are comprised of
several tree species that are vulnerable to climate change and
are expected to experience large shifts in abiotic conditions in
the near future (Price et al. 2013). Thus, future work should
focus on understanding the generalizability (or lack thereof)
of Crockett and Hurteau’s work before extrapolating to other
systems.

The distinction between species that are vulnerable to cli-
mate change stress and regions that will experience stronger or
weaker changes in environmental conditions is an important
one with respect to species conservation questions. In part, it
highlights the need to consider prioritizing the conservation
of landscapes in addition to the conservation of individual
species or communities, a sentiment echoed by recent work
arguing for the preservation of geodiversity as a means of
preserving biodiversity (Schrodt et al. 2019; Read et al. 2020).
The distinction also serves to better contextualize remaining
questions about how to best manage our forests in prepara-
tion for ongoing climate change. Should land managers and
conservation practitioners prioritize limited resources to the
conservation of xeric forests that are closer to the edge of
habitable conditions or to the mesic forests that will likely
avoid the brunt of climate change stress until the tail end of
this century? In which parts of the American southwest will
we see the largest limitation to seedling recruitment and in
which parts will we continue to see successful recruitment in
remnant populations? At what point, if any, will recruitment
limitations become the overriding limitation to stability and
persistence of southwestern forests (as opposed to patterns of
adult tree die-off)?

Negative climate change effects in these forests are also
likely to differently affect human populations. For example,
indigenous peoples in the American southwest that dispropor-
tionately rely on ecosystem services provided by these forests
may also be proportionally more vulnerable to disruptions
due to climate change and could be at high risk for climate
change-related stress (Voggesser et al. 2013; Magargal et al.
2023). How do we make decisions that simultaneously protect
the health of nature as well as the health of people?

An important facet of this paper is the controlled, experi-
mental nature of the authors’ work. Tree seedlings were grown
in individual cones and potting mix in incubators, providing

an excellent understanding of physiological limits. However,
the flip side of using growth chambers is the loss of countless
confounding variables that tree seedlings experience in the
natural environment. These include edaphic qualities like
nutrient availability, soil texture and soil microbial commu-
nities (including symbionts and pathogens), as well as biotic
interactions with surrounding plants (Schaffer-Morrison and
Zak 2023). Prior work comparing incubator and greenhouse
experiments to observational studies has shown a mix of
similar trends and marked differences in results (Wolkovich
et al. 2012; Kambach et al. 2019). For this reason, it is
important that future work on seedling response to climate
change includes field-based observational studies in addition
to controlled greenhouse and/or incubator experiments to
contextualize findings.

Importantly, Crockett and Hurteau’s work leaves unan-
swered questions related to seedling performance in field set-
tings. Microenvironmental conditions experienced by juvenile
trees in forests will be affected by environmental heterogeneity
and altered by biotic interactions with surrounding organisms.
For example, Dobrowski et al. (2015) found that canopy
trees can ameliorate some negative climate change impacts
on tree seedling performance. Transplanting seedlings into
different tree communities or areas within a community that
have different average environmental conditions could be an
important next step in experimentally assessing how these
dynamics shape tree recruitment.

Another important unanswered question is whether and
how variation in tree seedling performance will translate
to canopy tree recruitment and to community-level stability.
Seedling survival is only one component of tree recruitment,
and previous research indicates that processes like seed pro-
duction, germination success and intermediate sapling recruit-
ment success will be just as important to determining what
future forests look like (Ibáñez et al. 2017). Therefore, while
mesic species seedling survival may not be at immediate risk
from climate change, persistence in their current range may
still be negatively affected in the short term by reductions in
seed production and seedling germination. Seedlings cannot
survive if they do not recruit into the forest floor in the first
place.

Despite these limitations, the work presented here by
Crockett and Hurteau represents an important step toward
gaining a better understanding of what future forests in the
American southwest will look like. Because tree seedlings
represent the future of a forest, information from their study
will help land managers and conservation practitioners make
decisions about how best to manage their forests in the face
of climate change. Future work should keep in mind lessons
from Crockett and Hurteau’s study—that climate change
results are dependent not only on species-level performance
but also on system-level susceptibility to climate change—
while continuing to explore how other biotic and abiotic
processes shape the forests of tomorrow.
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